Wastholm.com

So Horava did the unthinkable and amended Einstein's equations in a way that removed Lorentz symmetry. To his delight, this led to a set of equations that describe gravity in the same quantum framework as the other fundamental forces of nature: gravity emerges as the attractive force due to quantum particles called gravitons, in much the same way that the electromagnetic force is carried by photons. He also made another serious change to general relativity. Einstein's theory does not have a preferred direction for time, from the past to the future. But the universe as we observe it seems to evolve that way. So Horava gave time a preferred direction [...].

With these modifications in place, he found that quantum field theories could now describe gravity at microscopic scales without producing the nonsensical results that plagued earlier attempts. "All of a sudden, you have new ingredients for modifying the behaviour of gravity at very short distances," Horava says.